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ABSTRACT
Bug tracking systems (BTS) are widely used in software projects.
An important task in such systems consists of identifying dupli-
cate bug reports, i.e., distinct reports related to the same software
issue. For several reasons, reporting bugs that have already been
reported is quite frequent, making their manual triage impracti-
cal in large BTSs. In this paper, we present a novel deep learning
network based on soft-attention alignment to improve duplicate
bug report detection. For a given pair of possibly duplicate reports,
the attention mechanism computes interdependent representations
for each report, which is more powerful than previous approaches.
We evaluate our model on four well-known datasets derived from
BTSs of four popular open-source projects. Our evaluation is based
on a ranking-based metric, which is more realistic than decision-
making metrics used in many previous works. Achieved results
demonstrate that our model outperforms state-of-the-art systems
and strong baselines in different scenarios. Finally, an ablation study
is performed to confirm that the proposed architecture improves
the duplicate bug reports detection.
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1 INTRODUCTION
Bug fixing accounts for a substantial part of any software devel-
opment project. Thus, many projects make use of a bug tracking
system (BTS) to manage and track bug reports. One important task
in such systems is to identify duplicate bug reports, i.e., distinct
reports describing issues caused by the same bug in the software.
It is crucial to perform this task as fast as possible in order to pre-
vent developers from spending time looking for bugs already fixed.
Usually, a triage team manually labels new reports as duplicate or
not [29]. However, especially in open source projects, bug reports
can be submitted by developers, testers and even end users. This
heterogeneous environment leads to many duplicate bug reports.
For example, 12% of all reports are duplicate in one Eclipse instance
[4]. Therefore, devising automatic methods to detect duplicate bug
reports is crucial for efficient software maintenance. In the litera-
ture, such a task is called duplicate bug report detection, bug report
deduplication or, simply, bug deduplication.

Typically, a bug report comprises a summary, a description, and
some categorical fields (e.g., system, component and version). Re-
garding textual data, for simplicity, the terms word and token are
considered interchangeable in this work. One core component of
most methods in bug deduplication is a similarity function that
compares a pair of reports. How this function is composed and
used vary greatly from one method to another. A handful of stud-
ies [6, 10, 22, 37] employ deep neural networks in order to model
similarity functions. Deshmukh et al. [10], Budhiraja et al. [6] and
Xie et al. [37] works are based on Siamese neural networks [8] that
generate the representation of one bug report without considering
the other report content. This independent representation is limited
specially for textual data, since it may focus on generic features
that are not relevant for a specific comparison [32]. Poddar et al.
[22] try to mitigate that shortcoming by employing an architecture
that exchanges information between the reports during feature
extraction. This approach generates a joint representation based
on attention [1], in which the representation of a word in a report
attends to a pooled representation of all words in the other report.

In this work, we propose a novel deep learning network that
produces joint representations of reports based on a soft-attention
alignment mechanism [20]. The key component of this model is
a layer that compares each word in a report with a fixed-length
representation of all words in the other one. While Poddar et al. [22]
also use an attention mechanism, our proposed architecture is able
to summarize relevant information within one report conditioned
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to a specific segment of the other report. This provides a more
powerful representation of textual data.

Many previous works on bug deduplication have employed an
evaluation methodology called decision-making approach [17]. This
evaluation is based on pairs of reports labeled as positive when
they refer to the same bug or negative otherwise. Positive pairs
comprise all possible pairs within a set of duplicate reports. While
negative pairs are generated using some sampling technique. Model
performance is then measured by means of ordinary classification
metrics (like accuracy, precision and recall) over the generated set
of positive and negative pairs. The decision-making approach is
quite unrealistic, since the real scenario presents a much larger set
of negative candidates. When a new report is submitted to a BTS,
all previously submitted reports are duplicate candidates. Thus, this
evaluation methodology highly overestimate performance. Another
popular evaluation methodology is the ranking approach. It ac-
knowledges that the current techniques are not accurate enough to
automatically detect duplicate reports with no human intervention.
Therefore, in this approach, for a given new report, the proposed
methods generate a list of the K most likely duplicate reports. The
triager then identify whether a report is duplicate considering only
the reports from the recommendation list. Instead of searching and
examining hundreds of reports in the BTS, the triager can focus on
the K recommended reports.

We experimentally evaluate our model by means of a ranking
methodology based on Sun et al. [30]. We report on experiments
using four well-known datasets derived from BTSs of open-source
projects, namely Eclipse, Mozilla, NetBeans and OpenOffice. Bug
deduplication in open-source projects is particularly challenging
because any user can submit a bug report in their BTS and the
knowledge of these users about the system may vary significantly.
State-of-the-art systems and some strong baselines are compared to
the proposed model in several scenarios. Additionally, we perform
an ablation study to assess different aspects of our model.

The main contributions of this paper are summarized as follows:

(1) We propose a soft-alignment model that is based on a more
powerful architecture than previous methods.

(2) Our method and the baselines are evaluated using a more
realistic methodology. This work is the first to compare dif-
ferent deep learning methods using the ranking approach.

(3) Our method achieves state-of-the-art performance on all
considered datasets.

2 RELATEDWORK
Several non-deep learning methods in the literature address the
bug deduplication as a ranking problem. Runeson et al. [26] are
the first to use NLP techniques to approach duplicate bug report
detection. They measure report similarity by computing the cosine
similarity between bag-of-words vectors. Wang et al. [36] detected
duplicate reports by combining function calls during the system
execution with textual data. Sun et al. [30] trained an SVM to es-
timate the probability of reports being duplicate by receiving 54
textual similarity features generated from different combinations
of text origins, n-gram lengths and dictionaries. Sureka and Jalote
[31] proposed a similarity function whose output is proportional
to the quantity of n-gram of characters in common between two

reports. Sun et al. [29] proposed BM25Fext and REP for bug dedu-
plication. BM25Fext is an extension of BM25F specially designed
to address scenarios in which queries are long sentences with few
or no duplicate words. REP is a similarity function that linearly
combines BM25Fext scores using unigram and bigram with features
generated from categorical data comparisons. Prifti et al. [23] devel-
oped a method to rank reports using a time window and a unique
representation for each master group. Nguyen et al. [19] proposed a
method, called DBTM, that linearly combines the BM25F score and
the topic similarity computed by a model based on Latent Dirichlet
Allocation (LDA). Banerjee et al. [2] addressed the bug report dedu-
plication by using the longest common subsequence between the
bug reports. Zhou and Zhang [40] proposed a linear model, called
BugSim, which is trained to minimize the fidelity loss of triplets
using features inspired by Nallapati [18]. In Yang et al. [38], BM25
is used to weight the bag-of-words vectors which are compared by
the cosine similarity. Banerjee et al. [3] generated a top-20 list for
different similarity measures and aggregated them into a unique
list using two fusion approaches: one retrieves the maximum score
of a report in the lists while the other sums the similarity scores of
the reports. Lerch and Mezini [15] proposed to use the stack trace
in the bug report to better detect duplicate bug reports. Sabor et al.
[27] improved Lerch and Mezini [15] by employing only packages
names instead of full method names. Lin and Yang [16] combined
TF-IDF with a weighting scheme based on the term relations within
the clusters of reports. Lin et al. [17] trained an SVM to estimate
the duplication probability using cluster-based correlation features,
the BM25F score and the cosine similarity of word vectors. Yang
et al. [39] designed similarity function whose output depends on
product and component differences, the cosine similarity of TF-IDF
vectors and the average of word embeddings. Budhiraja et al. [7]
proposed LWE which combines LDA with the word embeddings.

Regarding deep learning methods, Xie et al. [37] proposed a con-
volutional neural network (CNN), called DBR-CNN, to classify pairs
of duplicate bug reports. In their architecture, a shared CNN inde-
pendently encodes the textual data of the pair of reports into two
vectors. A logistic regression then classifies each pair of reports by
receiving the cosine similarity of those vectors and a set of features
related to categorical data. In NLP, statistical methods parse textual
data from documents to discover latent themes, called topics, which
are common between multiple documents [5] (e.g., bug reports that
contain the words combo or font can be related to the topic UI). Pod-
dar et al. [22] proposed a neural network that simultaneously learns
to cluster reports based on topics while detecting duplicate pairs. A
recurrent neural network (RNN) represents each word of a report
as a vector. The k-first dimensions of these vectors are trained to
yield high similarities to words that are in the same topic. For the
classification, Poddar et al. [22] generate the joint-representation
of a report as a weighted average of its word vectors. An attention
mechanism calculates these weights by using the self-attention
coefficients of the topic information and the element-wise multi-
plication of the word representations in the report with the mean
pooling of all words in the other report. The authors used only
summary data from the reports in their experiments.

Budhiraja et al. [6] proposed a neural network, called DWEN,
in which the fixed-length representation of a report is the mean of
their word vectors and the classifier is a multi-layer neural network
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(MLNN) that receives only the representation of a pair of reports.
Deshmukh et al. [10] proposed two siamese neural networks for
bug deduplication. The authors used a feed-forward neural net-
work, a CNN, and a bidirectional LSTM to encode, respectively, the
categorical data, the description, and the summary into vectors.
The concatenation of these encoder outputs generates the fixed-
length representation of the reports. Deshmukh et al. [10] proposed
two approaches to calculate the similarity of the report representa-
tions. The first one, called Siamese Triplet, is trained to minimize a
hinge loss given a set of triplets and employs the cosine function
to compute the similarity between two reports. The second one,
called Siamese Pair, uses the binary cross-entropy loss of pair in the
training and scores the similarity between reports using a MLNN.

This paper presents a method that improves the representation
generation found in the previous deep learning approaches. Differ-
ent from Budhiraja et al. [6], Deshmukh et al. [10], and Xie et al.
[37], our model exchanges information between the reports before
encoding textual data into a fixed-length vector. Moreover, in the
feature extraction, our method can dynamically focus on different
segments of a report instead of providing a unique set of features
from it, as done by Poddar et al. [22]. This more powerful architec-
ture can reduce information loss in the representation generation
thereby improving the duplicate bug report detection.

3 SOFT ALIGNMENT MODEL FOR BUG
DEDUPLICATION

In this section, we describe our proposed Soft Alignment Model for
Bug Deduplication (SABD). This model receives a pair of bug reports:
a new query report q and a candidate report c previously submitted
to the repository. The model outputs the probability P(y |q, c) of q
being a duplicate of c , where y indicates whether the given reports
are duplicate (y = 1) or not (y = 0). We consider a bug report to
be composed of the categorical fields, a summary and a descrip-
tion. Given a query report q, the values of its categorical fields are
represented as the tuple qcat while the sequence of words of its
summary and description are denoted as qs and qd , respectively.
The same notation is employed for the candidate c .

Figure 1 depicts the SABD architecture. As we can see, SABD is
composed of the categorical and textualmodules (two sub-networks)
that independently compare the categorical and textual data from
both reports, respectively. The classifier receives these module
outputs and produces the final prediction P(y |q, c). While the cate-
gorical module is a straightforward dense neural network, a more
sophisticated architecture is employed by the textual module to
handle text. The core of this module is the soft alignment comparison
layer that allows the model to dynamically access distinct infor-
mation from the text. This mechanism is expected to improve the
model capacity to focus on relevant features in the textual data
for the deduplication. In the remainder, we describe the details of
SABD and its modules.

3.1 Categorical Module
The categorical module is composed of three layers: embedding,
encoder, and comparison. In the embedding layer, each categorical
field is related to a parameterized lookup table that links the field
value to a real-valued vector. This representation is more powerful
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Figure 1: SABD Architecture Overview.

than using binary variables (e.g., feature is 1 if and only if field
values are equal) since it allows the model to group similar field
values. Given the query q, the embedding layer concatenates the
real-valued vectors of each categorical value in q and outputs eq ∈
Rcl ·d

cat
, where cl is the number of categorical fields in the report

and dcat is a hyperparameter indicating the categorical vector
dimensions. The encoder layer receives the embedding layer output
eq and generates a fixed-representation aq of the categorical data
from q such that:

aq = ReLU (W aeq + ba ),

whereW a ∈ Rd
a×(cl ·dcat ) is the weight matrix parameter, ba ∈

Rd
a
is the bias parameter, and da is a hyperparameter that controls

the layer size. Analogously, the fixed representation ac is produced
for the categorical data of candidate c .

After encoding the categorical features into vectors aq and ac ,
the categorical comparison layer computes a comparative represen-
tation of these two vectors by a simple operation given by:

cmp(aq ,ac ) = [(aq − ac )2;aq ⊙ ac ], (1)

where [ · ; . . . ; · ] is the concatenation operator and ⊙ represents
element-wise multiplication. Finally, given the comparative repre-
sentation, a fully connected (FC) layer computes the comparison
layer output as:

hcat = ReLU (W h [aq ;ac ; cmp(xcq ,xcc )] + bh ),

whereW h ∈ Rd
h×4da is the FC weight matrix, bh ∈ Rd

h
is the FC

bias vector, and dh is a hyperparameter.

3.2 Textual Module
Although categorical features are relevant to solving bug deduplica-
tion, themost informative features are the summary and description
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texts. Thus, the core of our model is the textual module that com-
pares the textual features of the query and candidate reports (i.e.,
qs , qd , cs and cd ). It comprises four layers: textual embedding, soft
alignment comparison, textual encoder, and textual comparison.

3.2.1 Textual Embedding Layer. This layer independently trans-
forms the words from the query and candidate texts into real-
vectors (word embeddings). A pre-trained look-up table in this
layer links each word in the summary and description of a report to
an embedding. This word representation loses information about
the word origin since the same look-up table is used for both tex-
tual fields. Previous works [10, 29] present evidences that they are
both important for bug deduplication. Moreover, it is important
to distinguish summary and description words since each field
presents unique characteristics. Consequently, two distinct real-
vectors are employed to distinguish whether a word comes from
the summary or description. Such representation is denominated as
field embedding. Given a query q, the summary qs and description
qd are concatenated into a single sequence qt whose i-th word is
represented as: vqi = [w

q
i ; f

q
i ] ∈ R

dw+d f , where wq
i is the word

embedding, f qi is the field embedding, and dw and df are hyperpa-
rameters indicating their respective vector dimensions.

Although the field embeddings are learned in the learning phase,
word embedding vectors are not fine-tuned during the training
because it increases computation cost, limits vocabulary size and
can lead to overfitting [33]. Instead of updating word embedding
parameters, we provide each word representation v

q
i to a fully

connected layer (FC) along with residual connections:

x
q
i = v

q
i + ReLU(W

xv
q
i + b

x ), (2)

whereW x ∈ Rd
x×dx is the FC weight matrix, bx ∈ Rd

x
is the

FC bias vector, and dx = df + dw . This solution not only reduces
computation cost, memory usage, and model complexity but also
allows the model to project words into a more meaningful feature
space. In the end, textual embedding layer receives qs and qd and
outputs a sequence of embedding vectors xq = (xq1 ,x

q
2 , . . . ,x

q
|qt |),

where |qt | is the length of qt .
Similarly, for the candidate report c , a sequence of embedding

vectors xc = (xc1 ,x
c
2 , . . . ,x

c
|c t |) are provided by an identical embed-

ding layer, where ct is the concatenation of summary and descrip-
tion words in the candidate report and |ct | is the length of ct . Again,
as indicated in Figure 1, query and candidate textual embedding
layers share their parameters.

3.2.2 Soft Alignment Comparison Layer. Previous deep learning
methods for bug deduplication [6, 10, 22, 37] encode query and
candidate reports without or with limited data exchange. SABD
overcomes this limitation with an architecture that provides a more
powerful feature interaction. The core of this layer is the soft-
attention alignment [20]. This attention mechanism computes a
similarity score si j between query token qti and candidate token ctj
as such:

si j =

(
x
q
i

)T
· xcj

√
dx

.

The previous equation is known as the scaled dot-product [34].

In order to accentuate important features of the words contained
in a report, the soft alignment comparison layer must have access
to textual information from the other report. However, texts are
variable-length data and can contain a large set of potential rele-
vant features. Thus, this layer uses the similarity score to select
features from the report words that are related to a specific word
in the other report. These features are encoded into a fixed-length
representation. More precisely, each word vector xqi in the query
attends to all candidate vectors xc1 ,x

c
2 , . . . ,x

c
|c t | , in order to produce

a fixed-length representation:

x
q
i =

|c t |∑
j=1

α
qi
j xcj , (3)

where αqij = exp(si j )/
∑ |c t |
k=1 exp(sik ) is called attention score and

represents the normalized similarity score. xqi is denominated as
query contextual vector and is a weighted average of all word vectors
from the candidate. The most similar words in the candidate to a
word qti have the largest impact in the query contextual vector.
Analogously, each candidate token vector xtj attends to all query
token vectors in order to produce a candidate context vector:

xcj =

|qt |∑
i=1

α
c j
i x

q
i ,

where αc ji = exp(si j )/
∑ |qt |
k=1 exp(sk j ).

Finally, inspired byWang and Jiang [35], each token vector of the
query and candidate reports is compared with its corresponding
context vector by means of the comparison function defined in
Equation 1. Then, a fully-connected layer with a residual connection
receives the resulting comparison vector and modifies the word
vectors as follows:

m
q
i = x

q
i + ReLU(W

mcmp(xqi ,x
q
i ) + b

m ), (4)

mc
j = xcj + ReLU(W

mcmp(xcj ,x
c
j ) + b

m ), (5)

where cmp(·, ·) is defined in Equation 1,Wm ∈ Rd
x×2dx is the layer

weight matrix, and bm ∈ Rd
x
is the layer bias.

3.2.3 Textual Encoder Layer. This layer takes the variable-size rep-
resentation of a report text (query or candidate) and produces
a fixed-size representation. This operation is independently per-
formed for the query and candidate reports.

Considering a query q, a bi-directional long short-term memory
(bi-LSTM) processes the soft alignment comparison outputmq :

−→o
q
i =
−−−−→
LSTM(mq

i ,
−→o
q
i−1)

←−o
q
i =
←−−−−
LSTM(mq

i ,
←−o
q
i+1)

for i = 1, 2, . . . , |qt |. The vectors −→o q
i ∈ R

do and←−o q
i ∈ R

do are con-
catenated into oqi ∈ R

2do , where do is a hyperparameter indicating
the hidden size of the forward−−−−→LSTM and backward←−−−−LSTM . The intu-
ition is that the bi-LSTM enriches the previous representation with
contextual information and allows to capture long dependencies
between the words. For the sake of brevity, we omit the technical
details of bi-LSTM since it is a standard neural building block. For a
detailed explanation of the model, we refer the reader to Goodfellow
et al. [12].
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Finally, the fixed-representation of the query text is generated
as follows:

pq = Pooling(oq1 ,o
q
2 , . . . ,o

q
|qt |),

where pq ∈ R4d
o
, and Pooling is a function that concatenates the

results of the mean and max pooling operators. The first operator
calculates the average vector of the sequence oq while the second
performs the max operation through each dimension of the bi-
LSTM output. Similarly, the textual encoder layer generates the
fixed representation of the candidate text, denoted aspc . As depicted
in Figure 1, query and candidate textual encoder layers share their
parameters.

3.2.4 Textual Comparison Layer. This layer compares the textual
representations of both reports. As the categorical comparison layer,
the cmp(·, ·) function (Equation 1) is used to generate a comparative
representation. In the sequel, a fully connected layer generates the
actual textual comparison:

htxt = ReLU(W u [pq ;pc ; cmp(pq ,pc )] + bu ),

whereW u ∈ Rd
u×16do is the FC weight matrix, bu ∈ Rd

u
is the

FC bias vector, and du is a hyperparameter.

3.3 Classifier
The SABD output layer comprises two sub-layers: a fully-connected
layer and a classification layer. The input of the FC layer is the
concatenation of two vectors: the categorical comparison output
hcat and the query representation htxt . The classification layer is
a standard logistic regression. Thus, the output layer is given by:

P(y |c,q) = sigmoid(W sReLU(W rx + br ) + bs ),

where x = [hcat ;htxt ] ∈ R(d
h+du ) is the input described above;

W r ∈ Rd
r×(dh+du ), br ∈ Rd

r
,W s ∈ R1×d

r
, bs ∈ R are parameters;

and dr is a hyperparameter.

4 EXPERIMENTAL SETUP
In this section, we describe themain steps of our experimental setup:
the evaluation methodology, training procedure, used datasets, and
competing methods. The data used in this work and the developed
code are freely available 1.

4.1 Evaluation Methodology
Towards a more realistic evaluation setup than those used by previ-
ous deep learning methods, we evaluate our models using a ranking-
based methodology similar to Sun et al. [29]. First, we sort the bug
reports in a BTS by their creation date. Then, the reports are chrono-
logically read and inserted in the training set until a specific date t .
All the subsequent reports are used to create the test set. Finally, we
group the reports in the training set that describe the same bug into
buckets. In each bucket, the first submitted report is considered the
master report and the remaining ones are the duplicate reports.

In Table 1, we exemplify a BTSwith five bug reports. Considering
that t is 21/12/2018, we generate a training set composed of R1,
R2, and R3 and a test set consisting of R4 and R5. The training set
thus comprises two buckets: B1 = {R1,R3} and B2 = {R2}. During
evaluation, we chronologically pick each report r in the test set.
1https://github.com/irving-muller/soft_alignment_model_bug_deduplication

Table 1: Fictional BTS to Exemplify the Evaluation Method-
ology.

Bug report ID Creation Date Master Report
R1 01/12/2018 -
R2 12/12/2018 -
R3 20/12/2018 R1
R4 30/12/2018 -
R5 31/12/2018 R1

When r is a duplicate bug report, we generate a ranked list of the
buckets in the system. In this work, the score of a bucket Bi is the
highest score yielded by a method when it compares r with each
report in Bi . After checking whether r is duplicate, we consider
it as submitted and insert r into its correct bucket. Following this
procedure, for example, we first pick the report R4 in the scenario
of Table 1. A ranked list is not produced because R4 is not duplicate
and a new bucketB3 = {R4} is created. After that, the next report R5
is selected. Since it is duplicate, we generate a ranked list composed
of B1, B2, and B3. Then, R5 is inserted in B1.

Regarding the evaluation methodology used by other ranking
approach methods, Budhiraja et al. [6] do not describe how the test
dataset was generated nor the procedure to create the ranked list.
Both are crucial elements of the evaluation methodology and can
considerably impact the achieved performances. Deshmukh et al.
[10] extract pairs of bug reports from a BTS and randomly split
them into training and test datasets. In their evaluation, for each
duplicate bug report, their method outputs a recommendation list
composed of only reports within the test set. This artificially reduces
the number of reports that must be searched for each queried report,
whichmakes the problemmuch easier [4]. Furthermore, in the BTSs,
we only have access to data that was reported before a current time
x . Thus, the model can only be trained using data from this period.
After training a model, it only examines bug reports that were
created after x . Randomly shuffling the data allows the model to
be trained with reports created from the future (after x) and to
retrieve candidates that were submitted after the queried report.
Additionally, this randomization makes the problem easier because
it spreads more uniformly the features through the dataset and
can mitigate the concept drift issue. Therefore, we believe our
experimental setting is more realistic. We compare our methods
with those proposed in Budhiraja et al. [6] and Deshmukh et al. [10].
However, due to the methodological differences aforementioned,
and since source codewas not provided by authors, we implemented
those methods to the best of our knowledge, as described in Section
4.5.

Like Sun et al. [29], we evaluate a method using two metrics:
mean average precision (MAP) and recall rate@k (RR@k). Both
metrics are based on the ranking of reports according to the scores
computed by a method. MAP is a general ranking metric. In our
setting, rankings only need to contain one relevant item per query
to be considered a hit. Thus, MAP can be simplified as:

MAP =
1
Q

Q∑
i=1

1
pi
,
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whereQ is the number of duplicate bug reports in the evaluation set
and pi is the position of the correct bucket in the ranked list. RR@k
is equal to the ratio of duplicate reports whose correct buckets are
within the top-k buckets in the given ranking to the number of
duplicate bug reports. RR@k is defined as:

RR@k =
nk
Q
,

wherenk is the number of query reports in the test set for which the
corresponding bucket appears in the top-k positions of the ranking
computed by a method.

4.2 Datasets
We use parts of the datasets published by Lazar et al. [14] in our
experiments2. They retrieved and curated reports submitted until
2014 from four BTSs: OpenOffice, Eclipse, NetBeans and Mozilla.
OpenOffice contains a set of open-source tools that aim to help
the office activities. NetBeans and Eclipse are popular open-source
integrated development environments (IDEs) that support many
different languages. The Mozilla BTS manages bugs of several open
source projects, such as Thunderbird (email client) and Firefox (Web
browser).

Sun et al. [29] assess their methods using small portions of the
aforementioned datasets. More specifically, they use reports within
a three-year period for the OpenOffice dataset and within a one-
year period for the other three datasets. This choice ignores reports
submitted before this period, which overestimates their method
[24]. For each BTS, we use the reports employed by Sun et al. [29]
as our test datasets3. The reports submitted before these periods are
split into training and validation datasets. Validation sets comprise
the latest 5% reports and the remaining earlier reports comprise
training sets. Statistics of these datasets are presented in Table 2.

4.3 Time Window
As the number of reports submitted increases over time, it becomes
computationally expensive to detect duplicate bug reports in BTSs
since each new report has to be compared with all the reports
submitted before it. This growth indeed degrades the performance
of the method, which can negatively affect the triage process [4].
A simple solution for this problem, called time window or time
frame, consists of searching for reports that were submitted within
a specific range of days before the new report. In this study, a bucket
is considered to be a candidate when at least one of its reports is
within the defined time window.

Table 3 shows the fraction of duplicate bug reports in the test
sets for which one of the reports in their associated buckets can be
reached within time windows of one and three years. We consider
that three years is a reasonable time frame to be used in real envi-
ronments, especially for popular software BTSs that daily receive
many bug reports, e.g., Eclipse BTS receives on average around
99 reports per day [9]. Except for OpenOffice, the use of the time
window significantly reduces the computation demand at the cost
of a small negative impact on the performance upper bound – less
than 3.4% of duplicate reports will not have their bucket in the

2http://alazar.people.ysu.edu/msr14data/
3We decided to use the same period of Eclipse for Netbeans since [29] did not evaluate
their method on this BTS.

ranked list. We also test the methods with a time window of one
year to measure how its size affects performance.

4.4 Training
Wepreprocess the textual data by replacing all the non-alphanumeric
characters with spaces [29]. After that, the text is converted to lower-
case and tokenized on white space characters. This preprocessing
separates tokens concatenated by punctuation, e.g., module paths,
file paths, and function calls. Our intuition is that package, file, and
class names are relevant for this task. Analyzing a small sample
of long reports, we observed that many of them append lengthy
stack traces and log files to their description. Thus, we limit the
text length to 350 tokens in order to clean less important elements
without missing much relevant information. Although we acknowl-
edge that this value can be suboptimal, it appears to be sufficient
to achieve reasonable results. Categorical features comprise the
following fields: component, product, severity and priority.

Following Deshmukh et al. [10], we initialize the word embed-
ding using an instance of pre-trained vectors4. Words that appear
in the training dataset but not in that instance are pre-trained using
GloVe [21] and textual data from the reports in the training dataset.
To avoid overfitting, the word embeddings are not fine-tuned.

SABD is a binary classifier that takes two reports (query q and
candidate c) and outputs the probability P(y |q, c) of report q being a
duplicate of report c . Thus, it is trained over a set of pairs of reports
along with their labels in order to minimize the cross entropy loss
function:

J (θ ) = −
1
|S |

∑
(q,c,y)∈S

y log P(y |q, c) + (1 − y) log(1 − P(y |q, c)),

where S = {(q, c,y)} is the training set composed of pairs of reports
(q, c) along with their labels y (y = 1 when q and c are duplicates,
otherwise y = 0). We optimize SABD for 12 epochs using ADAM
optimizer [13] with a learning rate of 0.001 and a batch size of 256.

Building S is challenging since it is used to train a binary classifier
to perform a ranking task such that, at test time, there are more
negative examples than positive ones. In order to describe how S
is built, let us split it into two sets S = S+

⋃
S− such that S+ is the

set of positive examples, i.e, those whose y = 1; and S− is the set of
negative examples. S+ comprises all pairs of duplicate reports in the
set of training reports. On the other hand, S− is generated before
the start of each training epoch by sampling non-duplicate pairs
until |S+ |

|S− |
= rt , where rt is the rate between the pairs of duplicate

reports by the non-duplicate ones. Moreover, a negative pair is only
included in S− if − log(P(y = 0)) is larger than a given threshold
λ, i.e., if the example is not too easy for the current classifier. This
sampling is inspired by [11, 25, 28, 32] and speeds up training by
providingmore informative examples. SABD has achieved optimum
results for rt = 1 and λ = 10−3. The hyperparemeter values were
tuned using the validation set and their values are presented as
follows: dcat = 20, da = 40, dh = 40, dw = 300, df = 5, do = 150,
du = 600, and dr = 300.

4http://nlp.stanford.edu/data/glove.42B.300d.zip
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Table 2: Statistics of datasets. Period column indicates the period comprising each dataset as a whole (Train+Val+Test). Start
Date column indicates the first day included in test datasets.

Dataset Period Training Validation Test TotalDuplicate All Duplicate All Start Date Duplicate All
Eclipse 10/10/01 - 31/12/08 27,481 198,183 1,446 14,703 01/01/08 4,380 45,794 258,680
Mozilla 07/04/98 - 31/12/10 122,199 438,806 6,431 44,014 01/01/10 9,701 65,940 548,760
OpenOffice 16/10/00 - 31/12/10 13,570 80,786 714 4,109 01/01/08 4,664 31,333 116,228
Netbeans 21/08/98 - 31/12/08 16,639 116,351 875 5,548 01/01/08 5,009 31,667 153,566

Table 3: Percentage of Duplicate Bug Reports in the Test Set
that Reaches theCorrect Bucket in the TimeWindowofOne
Year and Three Years.

Dataset 1 year 3 years
Eclipse 88.53% 97.48%
OpenOffice 75.27% 90.97%
Netbeans 93.51% 98.88%
Mozilla 88.45% 96.73%

4.5 Competing Methods
We compare SABD with five other methods from the literature.
The BM25Fext and REP are ranking-approach methods that were
proposed by Sun et al. [29]. These are popular methods and their
implementations are available.5 Besides, we compare SABD with
the following deep learning methods: DWEN [6], Siamese Pair [10]
and Siamese Triplet [10]. Although these works have used ranking-
based evaluation methodologies, as described in Section 4.1, such
methodologies present relevant issues. Moreover, since their imple-
mentations are not available, we implemented them to the best of
our knowledge. We found that the following minor modifications
in the method architecture or training have improved their perfor-
mance in the validation dataset: 1) the feed-forward neural network
of DWEN receives categorical features generated in a similar way to
Siamese Pair [29]; 2) bi-LSTMs followed by average and max pool-
ings are used to encode the summary and description in Siamese
Pair and Siamese Triplet; 3) the last sub-network of Siamese Pair
receives, in addition to the original inputs, the squared difference
and element-wise multiplication of the final report representations;
and 4) we train these methods using the procedure described in
Section 4.4 to generate negative examples.

Models evaluated by means of decision-making methodology
cannot be fairly compared to those that employ ranking-based
approaches, since the underlying problem differs. However, SABD
is indirectly compared with Xie et al. [37], as this model is very
similar to the Siamese Pair baseline. Both models independently
generate the fixed-representation of report pairs using standard
neural network blocks (e.g., CNN and LSTM) and exploit categorical
data. Poddar et al. [22] propose a technique to simultaneously learn
latent topics from reports and train a classifier for bug deduplication.
This technique could be adapted to SABDwith some minor changes
due to its generality.

5https://chengniansun.bitbucket.io/projects/bug-report/fast-dbrd.tgz

5 EXPERIMENTAL RESULTS
Since the competing methods and SABD are stochatics, we perform
five distinct runs for each experimental configuration6. We report
in this section average performance in terms of MAP and RR@k ,
as well as standard deviations illustrated as error bands in figures
and inside brackets in tables. Following Sun et al. [29], the RR@k
is calculated for each k = 1, 2, . . . , 20. It is important to notice
that, when evaluating a model, we include duplicate reports whose
buckets are not within the considered time window. These duplicate
reports are considered misses for RR@k computation, and their
terms 1

pi in the MAP expression are 0.

5.1 Main Analysis
In the right column of Figure 2, we depict RR@k of all methods in
the four datasets using a time window of three years. In all datasets,
SABD constantly achieves the best RR@k among the compared
methods. It outperforms the second best method by 3.06%–5.01%
in Eclipse, 3.34%–6.35% in OpenOffice, 2.66%–6.64% in Netbeans,
and 4.17%–5.19% in Mozilla. Table 4 reports the method results on
the MAP metric in each test set using time window of one and
three years. Considering the time window of three years, SABD
also achieves higher MAP values than all methods in all datasets.
The improvement of SABD over the second best method on the
MAP metric is 3.5%, 4.3%, 3.9%, and 4.5% in Eclipse, OpenOffice,
Netbeans, and Mozilla, respectively.

Deshmukh et al. [10] compared the Siamese Triplet with Siamese
Pair using only accuracy and, according to them, the former signif-
icantly outperforms the latter. However, as mentioned before, the
accuracy is less adherent than RR@k and MAP for real environ-
ments. We found that, in fact, Siamese Pair achieves significantly
better RR@k and MAP values than Siamese Triplet in three of four
test sets. Moreover, our results show that DWEN achieves poor
MAP and RR@k values on the four datasets and it is significantly
outperformed by all methods in Eclipse, Netbeans, and Mozilla
repositories.

Considering only the deep learning models and the time window
of three years, the improvement of SABD over the second best
neural network on the RR@k metric is 6.78%–8.21%, 5.29%–6.91%,
5.97%–8.49% and 4.17%–5.19% in Eclipse, OpenOffice, Netbeans
and Mozilla, respectively. In terms of MAP, SABD surpasses the
second best neural network by 7.2% in Eclipse, 4.3% in OpenOffice,
6.8% in Netbeans and 4.5% in Mozilla. To the best our knowledge,
we are the first to compare different neural networks in the bug

6BM25Fext and REP are run 10 times in NetBeans since they generated large standard
deviation.
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(a) Eclipse - 1 year
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(b) Eclipse - 3 years
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(c) OpenOffice - 1 year
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(d) OpenOffice - 3 years
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(e) Netbeans - 1 year
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(f) Netbeans - 3 years
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(g) Mozilla - 1 year
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(h) Mozilla - 3 years

Figure 2: Recall Rate@k in Test Sets of Eclipse, OpenOffice, Netbeans and Mozilla.
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Table 4: MAP in Test Sets.

Method Eclipse OpenOffice Netbeans Mozilla
1 year 3 years 1 year 3 years 1 year 3 years 1 year 3 years

DWEN 0.353[0.004] 0.325[0.007] 0.276[0.003] 0.252[0.004] 0.365[0.006] 0.333[0.004] 0.305[0.004] 0.282[0.012]
BM25Fext 0.402[0.016] 0.398[0.010] 0.315[0.037] 0.313[0.054] 0.417[0.027] 0.378[0.066] 0.338[0.005] 0.320[0.002]
Siamese Triplet 0.401[0.005] 0.387[0.002] 0.356[0.005] 0.358[0.004] 0.466[0.001] 0.446[0.002] 0.376[0.002] 0.367[0.003]
Siamese Pair 0.425[0.006] 0.410[0.005] 0.346[0.003] 0.343[0.007] 0.482[0.004] 0.454[0.004] 0.401[0.003] 0.390[0.004]
REP 0.452[0.001] 0.447[0.003] 0.361[0.003] 0.355[0.003] 0.472[0.045] 0.483[0.024] 0.365[0.004] 0.343[0.007]
SABD 0.484[0.004] 0.482[0.006] 0.400[0.008] 0.401[0.011] 0.538[0.006] 0.522[0.006] 0.443[0.005] 0.435[0.005]

deduplication using the ranking methodology. Amongst all studies
in the literature, Poddar et al. [22] was the first to compare different
deep learning methods for this task, although they evaluate them
using the decision-making methodology.

Regarding the methods proposed by Sun et al. [29], the first
relevant point is that BM25Fext achieves a similar curve regarding
RR@k and a slightly better MAP value than the Siamese Triplet
in Eclipse. Moreover, REP outperforms the two siamese neural
networks in Eclipse and Netbeans, and it has comparable results
to Siamese Triplet and Siamese Pair in OpenOffice. Even though
BM25Fext and REP are simpler methods than the siamese neural
networks that contain thousands of parameters, they are able to
perform similarly or better than these deep learning models. Finally,
it is important to point that REP and BM25Fext have a large standard
deviation in OpenOffice and, exclusively BM25Fext, in Netbeans.

5.1.1 Time Window Analysis. In the left column of Figure 2, we
present RR@k for all the considered methods, for k = 1, 2, . . . , 20,
on the four test sets using a time window of one year. The MAP re-
sults of these methods in the same experimental setups are reported
in Table 4. Despite some minor differences, the findings using a
window of one year are similar to the ones with a longer frame of
three years – including the fact that SABD constantly outperforms
the methods in terms of MAP and RR@k in all datasets.

Extending thewindow span from one to three years decreases the
number of duplicate bug reports whose ranked list never contains
the correct master reports. However, we found that this does not
necessarily correspond to performance improvements in terms of
RR@k . For instance, in Figure 3, we compare the curve of RR@k
achieved by SABD in each dataset and time window. Increasing the
time frame positively impacts, in general, the SABD performance in
OpenOffice and Eclipse, while it marginally reduces its performance
in Netbeans and, partially, in Mozilla. We believe that this occurs
due to the trade-off between two factors related to the time window
length. Expanding the time window raises the upper bound of
the RR@k . However, at the same time, it increases the quantity
of reports that are searched, making the bug deduplication more
difficult [4]. Finally, as shown in Table 4, increasing the timewindow
from one to three years reduces the performance of the methods
in terms of MAP. This indicates that MAP is more sensitive to the
quantity of reports that must be searched than RR@k .

5.2 Ablation Study
In this section, we perform an ablation study to evaluate the effec-
tiveness of different components of SABD. Ablation study consist
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Figure 3: Comparison of SABD performance in Term of
RR@k .

in removing a single component from the original architecture, and
measuring how much this isolated modification impacts the model
performance. The more a component affects the performance, the
more effective it is considered.

We test two distinct configurations related to the soft alignment
comparison layer. Setup (1) measures the impact of the data ex-
change by removing the soft alignment comparison layer, thus
independently generating the report representations as Sun et al.
[29], Xie et al. [37], and Budhiraja et al. [6]. Although this setup
may show the layer importance, it is not clear which part of the
layer is the most significant. Thus, one also needs to evaluate the
importance of SABD capacity to dynamically focus on different
parts of a report.

If the model is able to compress the report into a fixed-length
vector without losing any relevant information, then SABD will
achieve similar results because the FC layer in the soft alignment
comparison layer produces similar outputs. However, if SABD is
negatively impacted, the summarization of a report into a fixed-
length representation is the bottleneck that needs to be replaced by
a more powerful mechanism such as the soft-attention alignment.

Setup (2) studies the need for the soft-attention alignment by
replacing it with a mechanism similar to that of Poddar et al. [22],
which is more powerful than a simple mean-pooling since the fixed-
length representation of a report depends on the other report. In
(2), the context vector of the query xqi is the attention mechanism
result given by Equation 3 in which the k-th attention coefficient is
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proportional to the scaled dot-product:

α
qi
k ∝

xck ·Mean[xq1 , . . . ,x
q
|qt |]

√
dx

,

where xck is the k-th word vector of the candidate and Mean[. . . ]
is the result of the mean-pooling operator over the word vectors in
the query. The candidate context vectors xcj are produced likewise.

Furthermore, we test four additional setups. In (3), the categori-
cal module is removed from SABD, i.e, only textual data is used for
detecting duplicate reports. In (4), we remove the fully-connected
layer (Equation 2) that modifies the concatenation of the word and
field embedding vectors (vqi andvcj ). In (5), we remove the bi-LSTM
in the textual encoder layer, i.e., the mean and max-pooling gen-
erate the fixed-length representation of the reports. In (6), field
embedding is not concatenated with word embeddings and, thus,
the words from the summary and description are identically repre-
sented.

Figure 4 and Table 5 report the RR@k and MAP achieved by the
seven configurations in the validation dataset of Eclipse. As shown
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Figure 4: Ablation study in termm of RR@k .

Table 5: Ablation Study in Term of MAP.

Method MAP Diff.
SABD 0.500[0.005] -0.000
(6) Remove Field Embedding 0.505[0.002] +0.005
(5) Remove bi-LSTM 0.468[0.005] -0.032
(4) Remove FC in Textual Embedding 0.465[0.008] -0.035
(3) Remove Categorical Encoder 0.467[0.008] -0.033
(2) xqi and xcj produced by [22] 0.440[0.009] -0.060
(1) Remove Soft-alignment Comparison 0.424[0.006] -0.076

in Figure 4 and Table 5, the soft-alignment comparison is the most
crucial component of our model since removing this layer from
SABD significantly degrades its performance. Besides, the setup (1)
is marginally outperformed by setup (2). Both results corroborate
the hypothesis that data exchange improves the representations.
We also observe that the model performance substantially decreases
when the soft-attention alignment is replaced by a less powerful

mechanism. This confirms our assumption that summarizing re-
port information into fixed-length representation is the bottleneck
of the Poddar et al. [22] model. An architecture that dynamically
focuses on distinct information from a report is less prone to lose
information and, therefore, performs a better report comparison.
We also observe that removing the FC sublayer from the textual em-
bedding layer decreases SABD performance. This result confirms
our hypothesis about the importance of projecting the words into
a dimension space that better captures word relevance for the bug
deduplication. As expected, SABD performs significantly worse
when categorical data is not used. This data provides additional
information about the report which can help the bug deduplica-
tion (e.g., the probability of two reports being duplicate from two
different software components is usually low). Further, removing
the bi-LSTM considerably decreases the model performance which
demonstrates our hypothesis that contextual information about the
words is useful for deduplication.

Finally, we find that removing the field embedding does not
significantly affect the SABD performance. This is an unexpected
result since words from different fields were supposed to have
distinct relevance.

6 CONCLUDING REMARKS
We proposed SABD, a novel soft alignment method for bug dedu-
plication. In contrast of Siamese neural networks, SABD exchanges
data between the reports before generating their fixed-length repre-
sentations. The mechanism responsible for this data interchange is
more powerful than the one proposed in Poddar et al. [22] because it
can dynamically focus on distinct information of a report during the
feature extraction of the other report. We experimentally evaluate
SABD and competing methods (including two non-deep learning
ones) using a methodology based on Sun et al. [29]. This methodol-
ogy is more adherent to real environments than the ones often used
in the literature [6, 10, 22, 37]. SABD significantly outperforms the
other methods in all experimental setups.

It is important to notice that, even though competing deep learn-
ing methods were implemented to the best of our knowledge, it is
not possible to guarantee that those are identical to the ones used
in the studies. As shown in the ablation study, the soft-aliment pos-
itively impacts the model performance. However, this mechanism
has a cost in terms of runtime. As the fixed-length representations
of the reports are jointly generated, it is not possible to save com-
putation time by storing them. Therefore, our model is slower than
the methods based on siamese neural networks.
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